Silver Nanoparticles Impact Biofilm Communities and Mussel Settlement
نویسندگان
چکیده
Silver nanoparticles (AgNPs) demonstrating good antimicrobial activity are widely used in many fields. However, the impact of AgNPs on the community structures of marine biofilms that drive biogeochemical cycling processes and the recruitment of marine invertebrate larvae remains unknown. Here, we employed MiSeq sequencing technology to evaluate the bacterial communities of 28-day-old marine biofilms formed on glass, polydimethylsiloxane (PDMS), and PDMS filled with AgNPs and subsequently tested the influence of these marine biofilms on plantigrade settlement by the mussel Mytilus coruscus. AgNP-filled PDMS significantly reduced the dry weight and bacterial density of biofilms compared with the glass and PDMS controls. AgNP incorporation impacted bacterial communities by reducing the relative abundance of Flavobacteriaceae (phylum: Bacteroidetes) and increasing the relative abundance of Vibrionaceae (phylum: Proteobacteria) in 28-day-old biofilms compared to PDMS. The settlement rate of M. coruscus on 28-day-old biofilms developed on AgNPs was lower by >30% compared to settlement on control biofilms. Thus, the incorporation of AgNPs influences biofilm bacterial communities in the marine environment and subsequently inhibits mussel settlement.
منابع مشابه
Synthesis of silver nanoparticles and its synergistic effects in combination with imipenem and two biocides against biofilm producing Acinetobacter baumannii
Objectives:Biofilms are communities of bacteria attached to surfaces through an external polymeric substances matrix. In the meantime, Acinetobacterbaumannii is the predominant species related to nosocomial infections. In the present study, the effect of silver nanoparticles alone and in combination with biocides and imipenem against planktonic and biofilms of A. baumannii was assessed. Materi...
متن کاملSilver nanoparticles as an alternative strategy against bacterial biofilms.
Biofilms are complex bacterial communities that resist the action of antibiotics and the human immune system. Bacteria within biofilms are the cause of numerous, almost impossible to eradicate, persistent infections. Biofilms can form on many medical devices and implants, and so have an enormous impact on medicine. Due to the lack of effective anti-biofilm antibiotics, novel alternative compoun...
متن کاملEvaluation of Anti biofilm and Antibiotic Potentiation Activities of Silver Nanoparticles Against some Nosocomial Pathogens
Nowadays silver nanoparticles (AgNPs) are used as antimicrobial due to its well known physical, chemical, and biological properties. A large collection of bacterial cells adhering to a surface is called bacterial biofilm. Exposure to silver nano particles (AgNPs) may prevent colonization of new bacteria onto the biofilm. In the present work, we have investigated whether the biofilm format...
متن کاملAnti-biofilm Activity of Synthesized Silver Nanoparticles Using Asphodelus dendroides Extract against Antibiotic Resistant and Biofilm Forming Klebsiella pneumoniae Clinical Strains: A Laboratory Study
Background and Objectives: Synthesis of silver nanoparticles (AgNPs) using plant extract is cost effective, while, one of the applications of AgNPs is its antimicrobial and anti-biofilm activities. The aim of this study was to investigate the anti-biofilm activity of synthesized AgNPs using A. dendroides against antibiotic resistant and biofilm forming clinical isolates of Klebsiella pneumoniae...
متن کاملEffect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study
BACKGROUND Candida albicans is the most common pathogenic fungus isolated in bloodstream infections in hospitalized patients, and candidiasis represents the fourth most common infection in United States hospitals, mostly due to the increasing numbers of immune- and medically-compromised patients. C. albicans has the ability to form biofilms and morphogenetic conversions between yeast and hyphal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016